How to Detect SU Binaries in iOS Apps
Learn to Detect SU Binaries in iOS apps, in mobile CI/CD with a Data-Driven DevSecOps™ build system.
What are SU Binaries on iOS?
SU Binaries, also known as “SuperUser” or simply “SU,” play a crucial role in iOS jailbreaking. When an iOS device is “jailbroken,” the user gains elevated (superuser) privileges, enabling them to modify or access system components that would typically be restricted. These elevated permissions are facilitated by the SU binary.
Why Detect SU Binaries in iOS Apps?
If an iOS device has undergone jailbreaking, it can circumvent system security mechanisms, modify system settings, remove or alter system apps, and potentially install malicious software without the user’s awareness. This can put the user’s private data at risk and make the device susceptible to various threats, including memory dumping, debugging, data theft, and more. Detecting SU binaries helps ensure that apps operate as designed and that user data remains protected.
Prerequisites for Using Detect SU Binaries:
To use Appdome’s mobile app security build system to Detect SU Binaries , you’ll need:
- Appdome account (create a free Appdome account here)
- A license for Detect SU Binaries
- Mobile App (.ipa for iOS)
- Signing Credentials (see Signing Secure Android apps and Signing Secure iOS apps)
Detect SU Binaries on iOS apps using Appdome
On Appdome, follow these simple steps to create self-defending iOS Apps that Detect SU Binaries without an SDK or gateway:
-
Upload the Mobile App to Appdome.
-
Upload an app to Appdome’s Mobile App Security Build System
-
Upload Method: Appdome Console or DEV-API
-
iOS Formats: .ipa
-
Detect SU Binaries Compatible With: Obj-C, Java, Swift, Flutter, React Native, Unity, Xamarin, Cordova and more
-
-
Build the feature: Detect SU Binaries.
-
Building Detect SU Binaries by using Appdome’s DEV-API:
-
Create and name the Fusion Set (security template) that will contain the Detect SU Binaries feature as shown below:
-
Follow the steps in Sections 2.2.1-2.2.2 of this article, Building the Detect SU Binaries feature via Appdome Console, to add the Detect SU Binaries feature to this Fusion Set.
-
Open the Fusion Set Detail Summary by clicking the “...” symbol on the far-right corner of the Fusion Set. Copy the Fusion Set ID from the Fusion Set Detail Summary (as shown below):
Figure 2: Fusion Set Detail Summary
Note: Annotating the Fusion Set to identify the protection(s) selected is optional only (not mandatory). -
Follow the instructions below to use the Fusion Set ID inside any standard mobile DevOps or CI/CD toolkit like Bitrise, App Center, Jenkins, Travis, Team City, Circle CI or other system:
-
Build an API for the app – for instructions, see the tasks under Appdome API Reference Guide
-
Look for sample APIs in Appdome’s GitHub Repository
-
Figure 1: Fusion Set that will contain the Detect SU Binaries feature
Note: Naming the Fusion Set to correspond to the protection(s) selected is for illustration purposes only (not required). -
-
Building the Detect SU Binaries feature via Appdome Console
To build the Detect SU Binaries protection by using Appdome Console, follow the instructions below.
-
Where: Inside the Appdome Console, go to Build > Security Tab > OS Integrity section.
-
How: Check whether Jailbreak Detection is toggled On (enabled), otherwise enable it . The feature Detect SU Binaries is enabled by default, as shown below. Toggle (turn ON) Detect SU Binaries, as shown below.
If needed, Customize the Threat Notification to be displayed to the mobile end-user in a standard OS dialog notification when Appdome Detects SU Binaries.Figure 3: Detect SU Binaries option
Note: The App Compromise Notification contains an easy to follow default remediation path for the mobile app end user. You can customize this message as required to achieve brand specific support, workflow or other messaging. -
When you enable Jailbreak Detection you'll notice that your Fusion Set you created in step 2.1.1 now bears the icon of the protection category that contains Detect SU Binaries
Figure 4: Fusion Set that displays the newly added Detect SU Binaries protection
-
Click Build My App at the bottom of the Build Workflow (shown in Figure 3).
-
Congratulations! The Detect SU Binaries protection is now added to the mobile app -
-
Certify the Detect SU Binaries feature in iOS Apps
After building Detect SU Binaries, Appdome generates a Certified Secure™ certificate to guarantee that the Detect SU Binaries protection has been added and is protecting the app. To verify that the Detect SU Binaries protection has been added to the mobile app, locate the protection in the Certified Secure™ certificate as shown below:
Figure 5: Certified Secure™ certificate
Each Certified Secure™ certificate provides DevOps and DevSecOps organizations the entire workflow summary, audit trail of each build, and proof of protection that Detect SU Binaries has been added to each iOS app. Certified Secure provides instant and in-line DevSecOps compliance certification that Detect SU Binaries and other mobile app security features are in each build of the mobile app
Using Threat-Events™ for SU Binaries Intelligence and Control in iOS Apps
Appdome Threat-Events™ provides consumable in-app mobile app attack intelligence and defense control when SU Binaries are detected. To consume and use Threat-Events™ for SU Binaries in iOS Apps, use AddObserverForName in Notification Center, and the code samples for Threat-Events™ for SU Binaries shown below.
The specifications and options for Threat-Events™ for SU Binaries are:
Threat-Event™ Elements | Detect SU Binaries Method Detail |
---|---|
Appdome Feature Name | Detect SU Binaries |
Threat-Event Mode | |
OFF, IN-APP DEFENSE | Appdome detects, defends and notifies user (standard OS dialog) using customizable messaging. |
ON, IN-APP DETECTION | Appdome detects the attack or threat and passes the event in a standard format to the app for processing (app chooses how and when to enforce). |
ON, IN-APP DEFENSE | Uses Appdome Enforce mode for any attack or threat and passes the event in a standard format to the app for processing (gather intel on attacks and threats without losing any protection). |
Certified Secure™ Threat Event Check | x |
Visible in ThreatScope™ | x |
Developer Parameters for Detecting SU Binaries Threat-Event™ | |
Threat-Event NAME | |
Threat-Event DATA | reasonData |
Threat-Event CODE | reasonCode |
Threat-Event REF | |
Threat-Event SCORE | |
currentThreatEventScore | Current Threat-Event score |
threatEventsScore | Total Threat-events score |
Threat-Event Context Keys | |
---|---|
message | Message displayed for the user on event |
failSafeEnforce | Timed enforcement against the identified threat |
externalID | The external ID of the event which can be listened via Threat Events |
osVersion | OS version of the current device |
deviceModel | Current device model |
deviceManufacturer | The manufacturer of the current device |
fusedAppToken | The task ID of the Appdome fusion of the currently running app |
kernelInfo | Info about the kernel: system name, node name, release, version and machine. |
deviceID | Current device ID |
reasonCode | Reason code of the occurred event |
buildDate | Appdome fusion date of the current application |
devicePlatform | OS name of the current device |
updatedOSVersion | Is the OS version up to date |
timeZone | Time zone |
deviceFaceDown | Is the device face down |
locationLong | Location longitude conditioned by location permission |
locationLat | Location latitude conditioned by location permission |
locationState | Location state conditioned by location permission |
wifiSsid | Wifi SSID |
wifiSsidPermissionStatus | Wifi SSID permission status |
With Threat-Events™ enabled (turned ON), iOS developers can get detailed attack intelligence and granular defense control in iOS applications and create amazing user experiences for all mobile end users when SU Binaries are detected.
The following is a code sample for native iOS apps, which uses all values in the specification above for Detect SU Binaries:
Important! Replace all placeholder instances of <Context Key> with the specific name of your threat event context key across all language examples. This is crucial to ensure your code functions correctly with the intended event data. For example, The <Context Key> could be the message, externalID, OS Version, reason code, etc.
x
let center = NotificationCenter.default
center.addObserver(forName: Notification.Name(""), object: nil, queue: nil) { (note) in
guard let usrInf = note.userInfo else {
return
}
let message = usrInf["message"]; // Message shown to the user
let reasonData = usrInf["reasonData"]; // Threat detection cause
let reasonCode = usrInf["reasonCode"]; // Event reason code
// Current threat event score
let currentThreatEventScore = usrInf["currentThreatEventScore"];
// Total threat events score
let threatEventsScore = usrInf["threatEventsScore"];
// Replace '<Context Key>' with your specific event context key
// let variable = usrInf["<Context Key>"];
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
xxxxxxxxxx
[[NSNotificationCenter defaultCenter] addObserverForName: @"" object:nil queue:nil usingBlock:^(NSNotification *org_note) {
__block NSNotification *note = org_note;
dispatch_async(dispatch_get_main_queue(), ^(void) {
// Message shown to the user
NSString *message = [[note userInfo] objectForKey:@"message"];
// Threat detection cause
NSString *reasonData = [[note userInfo] objectForKey:@"reasonData"];
// Event reason code
NSString *reasonCode = [[note userInfo] objectForKey:@"reasonCode"];
// Current threat event score
NSString *currentThreatEventScore = [[note userInfo] objectForKey:@"currentThreatEventScore"];
// Total threat events score
NSString *threatEventsScore = [[note userInfo] objectForKey:@"threatEventsScore"];
// Replace '<Context Key>' with your specific event context key
// NSString *variable = [[note userInfo] objectForKey:@"<Context Key>"];
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
}];
xxxxxxxxxx
const { ADDevEvents } = NativeModules;
const aDDevEvents = new NativeEventEmitter(ADDevEvents);
function registerToDevEvent(action, callback) {
NativeModules.ADDevEvents.registerForDevEvent(action);
aDDevEvents.addListener(action, callback);
}
export function registerToAllEvents() {
registerToDevEvent(
"",
(userinfo) => Alert.alert(JSON.stringify(userinfo))
var message = userinfo["message"] // Message shown to the user
var reasonData = userinfo["reasonData"] // Threat detection cause
var reasonCode = userinfo["reasonCode"] // Event reason code
// Current threat event score
var currentThreatEventScore = userinfo["currentThreatEventScore"]
// Total threat events score
var threatEventsScore = userinfo["threatEventsScore"]
// Replace '<Context Key>' with your specific event context key
// var variable = userinfo["<Context Key>"]
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
);
}
x
RegisterReceiver(new ThreatEventReceiver(), new IntentFilter(""));
class ThreatEventReceiver : BroadcastReceiver
{
public override void OnReceive(Context context, Intent intent)
{
// Message shown to the user
String message = intent.GetStringExtra("message");
// Threat detection cause
String reasonData = intent.GetStringExtra("reasonData");
// Event reason code
String reasonCode = intent.GetStringExtra("reasonCode");
// Current threat event score
String currentThreatEventScore = intent.GetStringExtra("currentThreatEventScore");
// Total threat events score
String threatEventsScore = intent.GetStringExtra("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// String variable = intent.GetStringExtra("<Context Key>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
}
x
NSNotificationCenter.DefaultCenter.AddObserver(
(NSString)"", // Threat-Event Identifier
delegate (NSNotification notification)
{
// Message shown to the user
var message = notification.UserInfo.ObjectForKey("message");
// Threat detection cause
var reasonData = notification.UserInfo.ObjectForKey("reasonData");
// Event reason code
var reasonCode = notification.UserInfo.ObjectForKey("reasonCode");
// Current threat event score
var currentThreatEventScore = notification.UserInfo.ObjectForKey("currentThreatEventScore");
// Total threat events score
var threatEventsScore = notification.UserInfo.ObjectForKey("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// var variable = notification.UserInfo.ObjectForKey("<Context Keys>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
);
xxxxxxxxxx
window.broadcaster.addEventListener("", function(userInfo) {
var message = userInfo.message // Message shown to the user
var reasonData = userInfo.reasonData // Threat detection cause
var reasonCode = userInfo.reasonCode // Event reason code
// Current threat event score
var currentThreatEventScore = userInfo.currentThreatEventScore
// Total threat events score
var threatEventsScore = userInfo.threatEventsScore
// Replace '<Context Key>' with your specific event context key
// var variable = userInfo.<Context Keys>
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
x
import 'dart:async';
import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
class PlatformChannel extends StatefulWidget {
const PlatformChannel({super.key});
State<PlatformChannel> createState() => _PlatformChannelState();
}
class _PlatformChannelState extends State<PlatformChannel> {
// Replace with your EventChannel name
static const String _eventChannelName = "";
static const EventChannel _eventChannel = EventChannel(_eventChannelName);
void initState() {
super.initState();
_eventChannel.receiveBroadcastStream().listen(_onEvent, onError: _onError);
}
void _onEvent(Object? event) {
setState(() {
// Adapt this section based on your specific event data structure
var eventData = event as Map;
// Example: Accessing 'externalID' field from the event
var externalID = eventData['externalID'];
// Customize the rest of the fields based on your event structure
String message = eventData['message']; // Message shown to the user
String reasonData = eventData['reasonData']; // Threat detection cause
String reasonCode = eventData['reasonCode']; // Event reason code
// Current threat event score
String currentThreatEventScore = eventData['currentThreatEventScore'];
// Total threat events score
String threatEventsScore = eventData['threatEventsScore'];
// Replace '<Context Key>' with your specific event context key
// String variable = eventData['<Context Keys>'];
});
}
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
Using Appdome, there are no development or coding prerequisites to build secured iOS Apps by using Detect SU Binaries. There is no SDK and no library to code or implement in the app and no gateway to deploy in your network. All protections are built into each app and the resulting app is self-defending and self-protecting.
Releasing and Publishing Mobile Apps with Detect SU Binaries
After successfully securing your app by using Appdome, there are several available options to complete your project, depending on your app lifecycle or workflow. These include:
- Customizing, Configuring & Branding Secure Mobile Apps
- Deploying/Publishing Secure mobile apps to Public or Private app stores
- Releasing Secured Android & iOS Apps built on Appdome.
Related Articles:
- How to Detect Self-Modifying Root Detection on iOS apps
- How to Add Root Detection and Prevention to Android apps
- How to Detect Unknown Sources, Protect Android Apps
- How to Detect Android Developer Options, Protect Android Apps
How Do I Learn More?
If you have any questions, please send them our way at support.appdome.com or via the chat window on the Appdome platform.
Thank you!
Thanks for visiting Appdome! Our mission is to secure every app on the planet by making mobile app security easy. We hope we’re living up to the mission with your project.