Unity Code Obfuscation, Android & iOS apps

Last updated September 10, 2024 by Appdome

This Knowledge Base article describes how to use Appdome’s AI/ML in your CI/CD pipeline to continuously deliver plugins that Obfuscate Unity Code in Mobile apps.

What is Unity Code?

Unity is a real-time 3D development platform that allows building 2D and 3D applications such as games and simulations.

When you build applications by using the Unity platform, the Unity engine generates files that contain metadata about the application and, in the case of game applications, game data.

Why Should Developers Obfuscate Unity Code?

Obfuscating your iOS or Android application’s Unity Code prevents third-party applications built on the Unity platform from retrieving your application’s metadata files that holds the game data. In effect, Unity Code Obfuscation is functioning as a form of DRM. Access to these metadata files allows potential attackers to view, and possibly manipulate, sensitive internal application logic.

 

Prerequisites for Using Appdome's Unity Code Obfuscation Plugins:

To use Appdome’s mobile app security build system to Obfuscate Unity Code , you’ll need:

How to Implement Obfuscate Unity Code in Mobile Apps Using Appdome

On Appdome, follow these 3 simple steps to create self-defending Mobile Apps that Obfuscate Unity Code without an SDK or gateway:

  1. Designate the Mobile App to be protected.

    1. Upload an app via the Appdome Mobile Defense platform GUI or via Appdome’s DEV-API or CI/CD Plugins.

    2. Mobile App Formats: .ipa for iOS, or .apk or .aab for Android
    3. Unity Code Obfuscation is compatible with: Obj-C, Java, JS, C#, C++, Swift, Kotlin, Flutter, React Native, Unity, Xamarin, and more.
  2. Select the defense: Unity Code Obfuscation.

      1. Create and name the Fusion Set (security template) that will contain the Unity Code Obfuscation feature as shown below:
        fusion set that contains Unity Code Obfuscation .

        Figure 1: Fusion Set that will contain the Unity Code Obfuscation feature
        Note: Naming the Fusion Set to correspond to the protection(s) selected is for illustration purposes only (not required).

      2. Follow the steps in Sections 2.2-2.2.2 of this article to add the Unity Code Obfuscation feature to your Fusion Set via the Appdome Console.

      3. When you select the Unity Code Obfuscation you'll notice that the Fusion Set you created in step 2.1 now bears the icon of the protection category that contains Unity Code Obfuscation.

        Fusion Set applied Unity Code Obfuscation

        Figure 2: Fusion Set that displays the newly added Unity Code Obfuscation protection
        Note: Annotating the Fusion Set to identify the protection(s) selected is optional only (not mandatory).

      4. Open the Fusion Set Detail Summary by clicking the “...” symbol on the far-right corner of the Fusion Set. Copy the Fusion Set ID from the Fusion Set Detail Summary (as shown below): fusion Set Detail Summary image

        Figure 3: Fusion Set Detail Summary

      5. Follow the instructions below to use the Fusion Set ID inside any standard mobile DevOps or CI/CD toolkit like Bitrise, Jenkins, Travis, Team City, Circle CI or other system:
        1. Refer to the Appdome API Reference Guide for API building instructions.
        2. Look for sample APIs in Appdome’s GitHub Repository.
    1. Add the Unity Code Obfuscation feature to your security template.

      1. Navigate to Build > Anti Fraud tab > Mobile Cheat Prevention section in the Appdome Console.
      2. Toggle On > Unity Code Obfuscation.
        Unity Code Obfuscation option

        Figure 4: Selecting Obfuscate Unity Code

    2. Initiate the build command either by clicking Build My App at the bottom of the Build Workflow (shown in Figure 4) or via your CI/CD as described in Section 2.1.4.
    Congratulations!  The Unity Code Obfuscation protection is now added to the mobile app
  3. Certify the Unity Code Obfuscation feature in Mobile Apps

    After building Unity Code Obfuscation, Appdome generates a Certified Secure™ certificate to guarantee that the Unity Code Obfuscation protection has been added and is protecting the app. To verify that the Unity Code Obfuscation protection has been added to the mobile app, locate the protection in the Certified Secure™ certificate as shown below: Unity Code Obfuscation shown in Certificate secure

    Figure 5: Certified Secure™ certificate

    Each Certified Secure™ certificate provides DevOps and DevSecOps organizations the entire workflow summary, audit trail of each build, and proof of protection that Unity Code Obfuscation has been added to each Mobile app. Certified Secure provides instant and in-line DevSecOps compliance certification that Unity Code Obfuscation and other mobile app security features are in each build of the mobile app.

Using Threat-Events™ for Unity Code Intelligence and Control in Mobile Apps

Appdome Threat-Events™ provides consumable in-app mobile app attack intelligence and defense control when Unity Code is detected. To consume and use Threat-Events™ for Unity Code in Mobile Apps, use AddObserverForName in Notification Center, and the code samples for Threat-Events™ for Unity Code shown below.

The specifications and options for Threat-Events™ for Unity Code are:

Threat-Event™ Elements Obfuscate Unity Code Method Detail
Appdome Feature Name Unity Code Obfuscation
Threat-Event Mode
OFF, IN-APP DEFENSE Appdome detects, defends and notifies user (standard OS dialog) using customizable messaging.
ON, IN-APP DETECTION Appdome detects the attack or threat and passes the event in a standard format to the app for processing (app chooses how and when to enforce).
ON, IN-APP DEFENSE Uses Appdome Enforce mode for any attack or threat and passes the event in a standard format to the app for processing (gather intel on attacks and threats without losing any protection).
Certified Secure™ Threat Event Check x
Visible in ThreatScope™ x
Developer Parameters for Obfuscating Unity Code Threat-Event™
Threat-Event NAME
Threat-Event DATA reasonData
Threat-Event CODE reasonCode
Threat-Event REF
Threat-Event SCORE
currentThreatEventScore Current Threat-Event score
threatEventsScore Total Threat-events score
Threat-Event Context Keys
message Message displayed for the user on event
failSafeEnforce Timed enforcement against the identified threat
externalID The external ID of the event which can be listened via Threat Events
osVersion OS version of the current device
deviceModel Current device model
deviceManufacturer The manufacturer of the current device
fusedAppToken The task ID of the Appdome fusion of the currently running app
kernelInfo Info about the kernel: system name, node name, release, version and machine.
carrierPlmn PLMN of the device. Only available for Android devices.
deviceID Current device ID
reasonCode Reason code of the occurred event
buildDate Appdome fusion date of the current application
devicePlatform OS name of the current device
carrierName Carrier name of the current device. Only available for Android.
updatedOSVersion Is the OS version up to date
deviceBrand Brand of the device
deviceBoard Board of the device
buildUser Build user
buildHost Build host
sdkVersion Sdk version
timeZone Time zone
deviceFaceDown Is the device face down
locationLong Location longitude conditioned by location permission
locationLat Location latitude conditioned by location permission
locationState Location state conditioned by location permission
wifiSsid Wifi SSID
wifiSsidPermissionStatus Wifi SSID permission status
threatCode The last six characters of the threat code specify the OS, allowing the Threat Resolution Center to address the attack on the affected device.

With Threat-Events™ enabled (turned ON), Mobile developers can get detailed attack intelligence and granular defense control in Mobile applications and create amazing user experiences for all mobile end users when Unity Code is detected.


The following is a code sample for native Mobile apps, which uses all values in the specification above for Unity Code Obfuscation:


Important! Replace all placeholder instances of <Context Key> with the specific name of your threat event context key across all language examples. This is crucial to ensure your code functions correctly with the intended event data. For example, The <Context Key> could be the message, externalID, OS Version, reason code, etc.



Using Appdome, there are no development or coding prerequisites to build secured Mobile Apps by using Unity Code Obfuscation. There is no SDK and no library to code or implement in the app and no gateway to deploy in your network. All protections are built into each app and the resulting app is self-defending and self-protecting.

Releasing and Publishing Mobile Apps with Unity Code Obfuscation

After successfully securing your app by using Appdome, there are several available options to complete your project, depending on your app lifecycle or workflow. These include:

Related Articles:

How Do I Learn More?

If you have any questions, please send them our way at support.appdome.com or via the chat window on the Appdome platform.

Thank you!

Thanks for visiting Appdome! Our mission is to secure every app on the planet by making mobile app security easy. We hope we’re living up to the mission with your project.

Want a Demo?

Mobile App Modding Detection

TomWe're here to help
We'll get back to you in 24 hours to schedule your demo.

Search Appdome Solutions

Search
Supercharge The Experience In Mobile App Defense

Supercharge the Experience in Mobile App Defense

Appdome revolutionizes mobile app defense by integrating security seamlessly, enhancing the user experience for developers, cyber teams, and end-users without disruption.

Better User Experience In Mobile Defense

Better User Experience in Mobile Defense

This blog show how Appdome’s Intelligent Defense helps mobile brands and users resolve threats with the user experience as a central priority.