How to Enforce Rate Limiting in MobileBOT™ Defense
This Knowledge Base article describes how to use Appdome’s AI/ML in your CI/CD pipeline to continuously deliver plugins that Enforce Rate-Limit Connections in Mobile apps.
What is Rate Limiting?
Rate limiting is a strategy for limiting network traffic. It puts a cap on how often someone can repeat an action within a certain timeframe – for instance, trying to log in to an account. Rate limiting can help stop certain kinds of malicious bot activity. It can also reduce strain on web servers.
Rate limiting is often employed to stop bad bots from negatively impacting a website or application. Bot attacks that rate limiting can help mitigate include:
- Brute force attacks
- Distributed Denial-of-Service (DDoS) Attack
How Does Appdome Rate Limiting Connections Work?
Traditional rate limiting strategies primarily focus on monitoring the number of requests coming from each IP address within a certain timeframe. By analyzing the time between requests and the quantity, these systems identify potential abusive patterns. While conventional systems rely on Web Application Firewalls (WAFs) to enforce rate limiting on the server-side, Appdome takes this security measure one step further by enforcing rate-limit connections directly within the mobile application itself.
In addition to this in-app enforcement, Appdome now provides app developers with the option to add multiple enforcement URLs to the Rate Limit Connections feature. These URLs function independently and are not linked to the main session headers protected host. This arrangement ensures there is no future dependency with the list under Session Headers, permitting distinct and separate enforcement mechanisms for each URL. Importantly, while incorporating these URLs, developers must ensure that the base URL’s length remains unchanged.
For example, if a user repeatedly attempts to log into their account and fails, traditional rate limiting might lock the account or delay further login attempts, typically based on the user’s IP address or username. Attackers can sometimes circumvent IP-based restrictions using different IP addresses, or they might exploit username-based limitations by cycling through a list of known usernames with common passwords. Appdome’s in-app rate limiting addresses these loopholes. By monitoring the login attempts directly from the application, it identifies excessive login behaviors more accurately, regardless of any IP address changes or username strategies employed by attackers. Users making frequent unsuccessful login attempts will encounter a message indicating they’ve exceeded the allowed number of tries, advising them when they can attempt to log in again or that their account access has been temporarily restricted.
Note: When Rate Limit User Notifications are set, they apply to all protected hosts that are using Rate Limit Connections.
Note: If you’d like to use Deep Proxy Detection in conjunction with Rate-Limit Connections, you’ll need to activate the feature toggle.
Prerequisites for Using Appdome's Rate-Limit Connections Plugins:
To use Appdome’s mobile app security build system to Enforce Rate-Limit Connections , you’ll need:
- Appdome account (create a free Appdome account here)
- A license for Rate-Limit Connections
- Mobile App (.ipa for iOS, or .apk or .aab for Android)
- Signing Credentials (see Signing Secure Android apps and Signing Secure iOS apps)
How to Implement Enforce Rate-Limit Connections in Mobile Apps Using Appdome
On Appdome, follow these 3 simple steps to create self-defending Mobile Apps that Enforce Rate-Limit Connections without an SDK or gateway:
-
Designate the Mobile App to be protected.
-
Upload an app via the Appdome Mobile Defense platform GUI or via Appdome’s DEV-API or CI/CD Plugins.
-
Mobile App Formats: .ipa for iOS, or .apk or .aab for Android
-
Rate-Limit Connections is compatible with: Obj-C, Java, JS, C#, C++, Swift, Kotlin, Flutter, React Native, Unity, Xamarin, and more.
-
-
Select the defense: Rate-Limit Connections.
-
-
Follow the steps in Sections 2.2-2.2.2 of this article to add the Rate-Limit Connections feature to your Fusion Set via the Appdome Console.
-
When you select the Rate-Limit Connections you'll notice that the Fusion Set you created in step 2.1 now bears the icon of the protection category that contains Rate-Limit Connections.
Figure 2: Fusion Set that displays the newly added Rate-Limit Connections protection
Note: Annotating the Fusion Set to identify the protection(s) selected is optional only (not mandatory). -
Open the Fusion Set Detail Summary by clicking the “...” symbol on the far-right corner of the Fusion Set. Copy the Fusion Set ID from the Fusion Set Detail Summary (as shown below):
Figure 3: Fusion Set Detail Summary
-
Follow the instructions below to use the Fusion Set ID inside any standard mobile DevOps or CI/CD toolkit like Bitrise, Jenkins, Travis, Team City, Circle CI or other system:
-
Refer to the Appdome API Reference Guide for API building instructions.
-
Look for sample APIs in Appdome’s GitHub Repository.
-
Create and name the Fusion Set (security template) that will contain the Rate-Limit Connections feature as shown below:Figure 1: Fusion Set that will contain the Rate-Limit Connections feature
-
-
Add the Rate-Limit Connections feature to your security template.
-
Navigate to Build > Anti Bot tab > Rate-Limit Connections section in the Appdome Console.
-
Toggle On > Rate-Limit Connections.
(a) Choose to monitor this attack vector by checking the Threat Events checkbox associated with Rate-Limit Connections as shown below.
(b) To receive mobile Threat Monitoring, check the ThreatScope™ box as shown below. For more details, see our knowledge base article on ThreatScope™ Mobile XDR.Figure 4: Selecting Enforce Rate-Limit Connections
Note: The Appdome Platform displays the Mobile Operation Systems supported by each defense in real-time. For more details, see our OS Support Policy KB. -
Select the Threat-Event™ in-app mobile Threat Defense and Intelligence policy for Rate-Limit Connections:
-
Threat-Events™ OFF > In-App Defense
If the Threat-Events™ setting is not selected. Appdome will detect and defend the user and app by enforcing Rate-Limit Connections.
-
Threat-Events™ ON > In-App Detection
When this setting is used, Appdome detects when the Rate Limit is reached and passes Appdome’s Threat-Event™ attack intelligence to the app’s business logic for processing, enforcement, and user notification. For more information on consuming and using Appdome Threat-Events™ in the app, see section Using Threat-Events™ to Rate-Limit ConnectionsEnforce Intelligence and Control in Mobile Apps.
-
Threat-Events™ ON > In-App Defense
When this setting is used, Appdome detects and defends against Rate-Limit Connections (same as Appdome Enforce) and passes Appdome’s Threat-Event™ attack intelligence to the app’s business logic for processing. For more information on consuming and using Appdome Threat-Events™ in the app, see section Using Threat-Events™ for Rate-Limit ConnectionsEnforce Intelligence and Control in Mobile Apps.
-
-
Configure the User Experience Options for Rate-Limit Connections:
With Threat-Events™ OFF, Appdome provides several user experience options for mobile brands and developers.- App Compromise Notification: Customize the pop-up or toast Appdome uses to notify the user when a threat is present while using the protected mobile app.
- Short message Option. This is available for mobile devices that allow a banner notification for security events.
-
Localized Message Option. Allows Appdome users to support global languages in security notifications.
Figure 5: Default User Experience Options for Appdome’s Rate-Limit Connections
-
Rate-Limit Connections Threat Code™. Appdome uses AI/ML to generate a unique code each time Rate-Limit Connections is triggered by an active threat on the mobile device. Use the code in Appdome Threat Resolution Center™ to help end users identify, find and resolve active threats on the personal mobile devices.
-
Congratulations! The Rate-Limit Connections protection is now added to the mobile app -
-
Certify the Rate-Limit Connections feature in Mobile Apps
After building Rate-Limit Connections, Appdome generates a Certified Secure™ certificate to guarantee that the Rate-Limit Connections protection has been added and is protecting the app. To verify that the Rate-Limit Connections protection has been added to the mobile app, locate the protection in the Certified Secure™ certificate as shown below:
Figure 6: Certified Secure™ certificate
Each Certified Secure™ certificate provides DevOps and DevSecOps organizations the entire workflow summary, audit trail of each build, and proof of protection that Rate-Limit Connections has been added to each Mobile app. Certified Secure provides instant and in-line DevSecOps compliance certification that Rate-Limit Connections and other mobile app security features are in each build of the mobile app.
Using Threat-Events™ for Rate-Limit Connections Intelligence and Control in Mobile Apps
Appdome Threat-Events™ provides consumable in-app mobile app attack intelligence and defense control when Rate-Limit Connections is detected. To consume and use Threat-Events™ for Rate-Limit Connections in Mobile Apps, use AddObserverForName in Notification Center, and the code samples for Threat-Events™ for Rate-Limit Connections shown below.
The specifications and options for Threat-Events™ for Rate-Limit Connections are:
Threat-Event™ Elements | Enforce Rate-Limit Connections Method Detail |
---|---|
Appdome Feature Name | Rate-Limit Connections |
Threat-Event Mode | |
OFF, IN-APP DEFENSE | Appdome detects, defends and notifies user (standard OS dialog) using customizable messaging. |
ON, IN-APP DETECTION | Appdome detects the attack or threat and passes the event in a standard format to the app for processing (app chooses how and when to enforce). |
ON, IN-APP DEFENSE | Uses Appdome Enforce mode for any attack or threat and passes the event in a standard format to the app for processing (gather intel on attacks and threats without losing any protection). |
Certified Secure™ Threat Event Check | |
Visible in ThreatScope™ | |
Developer Parameters for Enforcing Rate-Limit Connections Threat-Event™ | |
Threat-Event NAME | MobileBotDefenseRateLimitReached |
Threat-Event DATA | reasonData |
Threat-Event CODE | reasonCode |
Threat-Event REF | 6801 |
Threat-Event SCORE | |
currentThreatEventScore | Current Threat-Event score |
threatEventsScore | Total Threat-events score |
Threat-Event Context Keys | |
---|---|
message | Message displayed for the user on event |
failSafeEnforce | Timed enforcement against the identified threat |
externalID | The external ID of the event which can be listened via Threat Events |
osVersion | OS version of the current device |
deviceModel | Current device model |
deviceManufacturer | The manufacturer of the current device |
fusedAppToken | The task ID of the Appdome fusion of the currently running app |
kernelInfo | Info about the kernel: system name, node name, release, version and machine. |
carrierPlmn | PLMN of the device. Only available for Android devices. |
deviceID | Current device ID |
reasonCode | Reason code of the occurred event |
buildDate | Appdome fusion date of the current application |
devicePlatform | OS name of the current device |
carrierName | Carrier name of the current device. Only available for Android. |
updatedOSVersion | Is the OS version up to date |
deviceBrand | Brand of the device |
deviceBoard | Board of the device |
buildUser | Build user |
buildHost | Build host |
sdkVersion | Sdk version |
timeZone | Time zone |
deviceFaceDown | Is the device face down |
locationLong | Location longitude conditioned by location permission |
locationLat | Location latitude conditioned by location permission |
locationState | Location state conditioned by location permission |
wifiSsid | Wifi SSID |
wifiSsidPermissionStatus | Wifi SSID permission status |
threatCode | The last six characters of the threat code specify the OS, allowing the Threat Resolution Center to address the attack on the affected device. |
With Threat-Events™ enabled (turned ON), Mobile developers can get detailed attack intelligence and granular defense control in Mobile applications and create amazing user experiences for all mobile end users when Rate-Limit Connections is detected.
The following is a code sample for native Mobile apps, which uses all values in the specification above for Rate-Limit Connections:
Important! Replace all placeholder instances of <Context Key> with the specific name of your threat event context key across all language examples. This is crucial to ensure your code functions correctly with the intended event data. For example, The <Context Key> could be the message, externalID, OS Version, reason code, etc.
xxxxxxxxxx
IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction("MobileBotDefenseRateLimitReached");
BroadcastReceiver threatEventReceiver = new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
String message = intent.getStringExtra("message"); // Message shown to the user
String reasonData = intent.getStringExtra("reasonData"); // Threat detection cause
String reasonCode = intent.getStringExtra("reasonCode"); // Event reason code
// Current threat event score
String currentThreatEventScore = intent.getStringExtra("currentThreatEventScore");
// Total threat events score
String threatEventsScore = intent.getStringExtra("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// String variable = intent.getStringExtra("<Context Key>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
};
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
registerReceiver(threatEventReceiver, intentFilter, Context.RECEIVER_NOT_EXPORTED);
} else {
registerReceiver(threatEventReceiver, intentFilter);
}
xxxxxxxxxx
val intentFilter = IntentFilter()
intentFilter.addAction("MobileBotDefenseRateLimitReached")
val threatEventReceiver = object : BroadcastReceiver() {
override fun onReceive(context: Context?, intent: Intent?) {
var message = intent?.getStringExtra("message") // Message shown to the user
var reasonData = intent?.getStringExtra("reasonData") // Threat detection cause
var reasonCode = intent?.getStringExtra("reasonCode") // Event reason code
// Current threat event score
var currentThreatEventScore = intent?.getStringExtra("currentThreatEventScore")
// Total threat events score
var threatEventsScore = intent?.getStringExtra("threatEventsScore")
// Replace '<Context Key>' with your specific event context key
// var variable = intent?.getStringExtra("<Context Key>")
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
}
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
registerReceiver(threatEventReceiver, intentFilter, Context.RECEIVER_NOT_EXPORTED)
} else {
registerReceiver(threatEventReceiver, intentFilter)
}
x
let center = NotificationCenter.default
center.addObserver(forName: Notification.Name("MobileBotDefenseRateLimitReached"), object: nil, queue: nil) { (note) in
guard let usrInf = note.userInfo else {
return
}
let message = usrInf["message"]; // Message shown to the user
let reasonData = usrInf["reasonData"]; // Threat detection cause
let reasonCode = usrInf["reasonCode"]; // Event reason code
// Current threat event score
let currentThreatEventScore = usrInf["currentThreatEventScore"];
// Total threat events score
let threatEventsScore = usrInf["threatEventsScore"];
// Replace '<Context Key>' with your specific event context key
// let variable = usrInf["<Context Key>"];
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
xxxxxxxxxx
[[NSNotificationCenter defaultCenter] addObserverForName: @"MobileBotDefenseRateLimitReached" object:nil queue:nil usingBlock:^(NSNotification *org_note) {
__block NSNotification *note = org_note;
dispatch_async(dispatch_get_main_queue(), ^(void) {
// Message shown to the user
NSString *message = [[note userInfo] objectForKey:@"message"];
// Threat detection cause
NSString *reasonData = [[note userInfo] objectForKey:@"reasonData"];
// Event reason code
NSString *reasonCode = [[note userInfo] objectForKey:@"reasonCode"];
// Current threat event score
NSString *currentThreatEventScore = [[note userInfo] objectForKey:@"currentThreatEventScore"];
// Total threat events score
NSString *threatEventsScore = [[note userInfo] objectForKey:@"threatEventsScore"];
// Replace '<Context Key>' with your specific event context key
// NSString *variable = [[note userInfo] objectForKey:@"<Context Key>"];
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
}];
xxxxxxxxxx
const { ADDevEvents } = NativeModules;
const aDDevEvents = new NativeEventEmitter(ADDevEvents);
function registerToDevEvent(action, callback) {
NativeModules.ADDevEvents.registerForDevEvent(action);
aDDevEvents.addListener(action, callback);
}
export function registerToAllEvents() {
registerToDevEvent(
"MobileBotDefenseRateLimitReached",
(userinfo) => Alert.alert(JSON.stringify(userinfo))
var message = userinfo["message"] // Message shown to the user
var reasonData = userinfo["reasonData"] // Threat detection cause
var reasonCode = userinfo["reasonCode"] // Event reason code
// Current threat event score
var currentThreatEventScore = userinfo["currentThreatEventScore"]
// Total threat events score
var threatEventsScore = userinfo["threatEventsScore"]
// Replace '<Context Key>' with your specific event context key
// var variable = userinfo["<Context Key>"]
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
);
}
x
RegisterReceiver(new ThreatEventReceiver(), new IntentFilter("MobileBotDefenseRateLimitReached"));
class ThreatEventReceiver : BroadcastReceiver
{
public override void OnReceive(Context context, Intent intent)
{
// Message shown to the user
String message = intent.GetStringExtra("message");
// Threat detection cause
String reasonData = intent.GetStringExtra("reasonData");
// Event reason code
String reasonCode = intent.GetStringExtra("reasonCode");
// Current threat event score
String currentThreatEventScore = intent.GetStringExtra("currentThreatEventScore");
// Total threat events score
String threatEventsScore = intent.GetStringExtra("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// String variable = intent.GetStringExtra("<Context Key>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
}
x
NSNotificationCenter.DefaultCenter.AddObserver(
(NSString)"MobileBotDefenseRateLimitReached", // Threat-Event Identifier
delegate (NSNotification notification)
{
// Message shown to the user
var message = notification.UserInfo.ObjectForKey("message");
// Threat detection cause
var reasonData = notification.UserInfo.ObjectForKey("reasonData");
// Event reason code
var reasonCode = notification.UserInfo.ObjectForKey("reasonCode");
// Current threat event score
var currentThreatEventScore = notification.UserInfo.ObjectForKey("currentThreatEventScore");
// Total threat events score
var threatEventsScore = notification.UserInfo.ObjectForKey("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// var variable = notification.UserInfo.ObjectForKey("<Context Keys>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
);
xxxxxxxxxx
window.broadcaster.addEventListener("MobileBotDefenseRateLimitReached", function(userInfo) {
var message = userInfo.message // Message shown to the user
var reasonData = userInfo.reasonData // Threat detection cause
var reasonCode = userInfo.reasonCode // Event reason code
// Current threat event score
var currentThreatEventScore = userInfo.currentThreatEventScore
// Total threat events score
var threatEventsScore = userInfo.threatEventsScore
// Replace '<Context Key>' with your specific event context key
// var variable = userInfo.<Context Keys>
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
x
import 'dart:async';
import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
class PlatformChannel extends StatefulWidget {
const PlatformChannel({super.key});
State<PlatformChannel> createState() => _PlatformChannelState();
}
class _PlatformChannelState extends State<PlatformChannel> {
// Replace with your EventChannel name
static const String _eventChannelName = "MobileBotDefenseRateLimitReached";
static const EventChannel _eventChannel = EventChannel(_eventChannelName);
void initState() {
super.initState();
_eventChannel.receiveBroadcastStream().listen(_onEvent, onError: _onError);
}
void _onEvent(Object? event) {
setState(() {
// Adapt this section based on your specific event data structure
var eventData = event as Map;
// Example: Accessing 'externalID' field from the event
var externalID = eventData['externalID'];
// Customize the rest of the fields based on your event structure
String message = eventData['message']; // Message shown to the user
String reasonData = eventData['reasonData']; // Threat detection cause
String reasonCode = eventData['reasonCode']; // Event reason code
// Current threat event score
String currentThreatEventScore = eventData['currentThreatEventScore'];
// Total threat events score
String threatEventsScore = eventData['threatEventsScore'];
// Replace '<Context Key>' with your specific event context key
// String variable = eventData['<Context Keys>'];
});
}
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
Using Appdome, there are no development or coding prerequisites to build secured Apps by using Rate-Limit Connections. There is no SDK and no library to code or implement in the app and no gateway to deploy in your network. All protections are built into each app and the resulting app is self-defending and self-protecting.
Releasing and Publishing Mobile Apps with Rate-Limit Connections
After successfully securing your app by using Appdome, there are several available options to complete your project, depending on your app lifecycle or workflow. These include:
- Customizing, Configuring & Branding Secure Mobile Apps.
- Deploying/Publishing Secure mobile apps to Public or Private app stores.
- Releasing Secured Android & iOS Apps built on Appdome.
Related Articles:
How to Use Appdome MobileBOT™ Defense
How to Use Session Headers in Mobile Bot Defense
How to use MobileBOT Source™ with Mobile Bot Defense
How Do I Learn More?
If you have any questions, please send them our way at support.appdome.com or via the chat window on the Appdome platform.
Thank you!
Thanks for visiting Appdome! Our mission is to secure every app on the planet by making mobile app security easy. We hope we’re living up to the mission with your project.