How to Protect Plists (property lists) in iOS apps
Learn to Prevent Plist modification in iOS apps, in mobile CI/CD with a Data-Driven DevSecOps™ build system.
What is Plist modification?
In iOS apps, a plist (property list) is a structured text file that contains metadata about the app that is essential for the app to run. Plists are collections of key-value pairs (such as a dictionary list) that specify how the system should interpret the associated bundle. Some key-value pairs characterize the bundle itself, while others configure the app, framework, or other entity that the bundle represents. Some keys are required, while others are specific to particular features of the executable.
iOS apps can have multiple plists for specific functions, and the details of what to include in the property list vary by executable type and by platform. However, all iOS apps must have at least one plist file (info.plist is the default property list supplied by Xcode when you create a project).
Why Prevent Plist modification in iOS Apps?
The data stored inside Plists often contains information that enables malicious users to harvest private data, understand app configuration or functionality, or modify values of strings, app permissions, and other sensitive app resources.
Following is a sample list of ways in which Plists can be abused or modified by cyber-criminals:
- Mobile game cheating – by changing the values of game properties such as coins, gems, lives, powers, game scores or any other values stored in plists.
- Disabling mobile ads.
- Requesting access to private user data.
- Request permissions to OS resources: AccessibiltyServices, Location, Camera, Contacts, Microphone, Bluetooth and so on.
Mobile developers can Protect Plists in any iOS apps with no code or coding. Appdome’s Protect Plist feature encrypts all plist files (properties files), with the exception of info.plist and plists related to app signing (for example: entitlements and provisioning profiles).
Prerequisites for Using Protect plist:
To use Appdome’s mobile app security build system to Prevent Plist modification , you’ll need:
- Appdome account (create a free Appdome account here)
- A license for Protect plist
- Mobile App (.ipa for iOS)
- Signing Credentials (see Signing Secure Android apps and Signing Secure iOS apps)
Prevent Plist modification on iOS apps using Appdome
On Appdome, follow these 3 simple steps to create self-defending iOS Apps that Prevent Plist modification without an SDK or gateway:
-
Upload the Mobile App to Appdome.
-
Upload an app to Appdome’s Mobile App Security Build System
-
Upload Method: Appdome Console or DEV-API
-
iOS Formats: .ipa
-
Protect plist Compatible With: Obj-C, Java, Swift, Flutter, React Native, Unity, Xamarin, Cordova and more
-
-
Build the feature: Protect plist.
-
Building Protect plist by using Appdome’s DEV-API:
-
Create and name the Fusion Set (security template) that will contain the Protect plist feature as shown below:
-
Follow the steps in Sections 2.2.1-2.2.2 of this article, Building the Protect plist feature via Appdome Console, to add the Protect plist feature to this Fusion Set.
-
Open the Fusion Set Detail Summary by clicking the “...” symbol on the far-right corner of the Fusion Set. Copy the Fusion Set ID from the Fusion Set Detail Summary (as shown below):
Figure 2: Fusion Set Detail Summary
Note: Annotating the Fusion Set to identify the protection(s) selected is optional only (not mandatory). -
Follow the instructions below to use the Fusion Set ID inside any standard mobile DevOps or CI/CD toolkit like Bitrise, App Center, Jenkins, Travis, Team City, Circle CI or other system:
-
Build an API for the app – for instructions, see the tasks under Appdome API Reference Guide
-
Look for sample APIs in Appdome’s GitHub Repository
-
Figure 1: Fusion Set that will contain the Protect plist feature
Note: Naming the Fusion Set to correspond to the protection(s) selected is for illustration purposes only (not required). -
-
Building the Protect plist feature via Appdome Console
To build the Protect plist protection by using Appdome Console, follow the instructions below.
-
Where: Inside the Appdome Console, go to Build > Anti Fraud Tab > Mobile Fraud Detection section.
-
How: Check whether is toggled On (enabled), otherwise enable it . The feature Protect plist is enabled by default, as shown below. Toggle (turn ON) Protect plist, as shown below.
If needed, Customize the Threat Notification to be displayed to the mobile end-user in a standard OS dialog notification when Appdome Prevents Plist modification.Figure 3: Prevent Plist modification option
Note: The App Compromise Notification contains an easy to follow default remediation path for the mobile app end user. You can customize this message as required to achieve brand specific support, workflow or other messaging. -
When you select the Protect plist you'll notice that your Fusion Set you created in step 2.1.1 now bears the icon of the protection category that contains Protect plist
Figure 4: Fusion Set that displays the newly added Protect plist protection
-
Click Build My App at the bottom of the Build Workflow (shown in Figure 3).
-
Congratulations! The Protect plist protection is now added to the mobile app -
-
Certify the Protect plist feature in iOS Apps
After building Protect plist, Appdome generates a Certified Secure™ certificate to guarantee that the Protect plist protection has been added and is protecting the app. To verify that the Protect plist protection has been added to the mobile app, locate the protection in the Certified Secure™ certificate as shown below:
Figure 5: Certified Secure™ certificate
Each Certified Secure™ certificate provides DevOps and DevSecOps organizations the entire workflow summary, audit trail of each build, and proof of protection that Protect plist has been added to each iOS app. Certified Secure provides instant and in-line DevSecOps compliance certification that Protect plist and other mobile app security features are in each build of the mobile app
Using Threat-Events™ for Plist modification Intelligence and Control in iOS Apps
Appdome Threat-Events™ provides consumable in-app mobile app attack intelligence and defense control when Plist modification is detected. To consume and use Threat-Events™ for Plist modification in iOS Apps, use AddObserverForName in Notification Center, and the code samples for Threat-Events™ for Plist modification shown below.
The specifications and options for Threat-Events™ for Plist modification are:
Threat-Event™ Elements | Prevent Plist modification Method Detail |
---|---|
Appdome Feature Name | Protect plist |
Threat-Event Mode | |
OFF, IN-APP DEFENSE | Appdome detects, defends and notifies user (standard OS dialog) using customizable messaging. |
ON, IN-APP DETECTION | Appdome detects the attack or threat and passes the event in a standard format to the app for processing (app chooses how and when to enforce). |
ON, IN-APP DEFENSE | Uses Appdome Enforce mode for any attack or threat and passes the event in a standard format to the app for processing (gather intel on attacks and threats without losing any protection). |
Certified Secure™ Threat Event Check | x |
Visible in ThreatScope™ | x |
Developer Parameters for Preventing Plist modification Threat-Event™ | |
Threat-Event NAME | |
Threat-Event DATA | reasonData |
Threat-Event CODE | reasonCode |
Threat-Event REF | |
Threat-Event SCORE | |
currentThreatEventScore | Current Threat-Event score |
threatEventsScore | Total Threat-events score |
Threat-Event Context Keys | |
---|---|
message | Message displayed for the user on event |
failSafeEnforce | Timed enforcement against the identified threat |
externalID | The external ID of the event which can be listened via Threat Events |
osVersion | OS version of the current device |
deviceModel | Current device model |
deviceManufacturer | The manufacturer of the current device |
fusedAppToken | The task ID of the Appdome fusion of the currently running app |
kernelInfo | Info about the kernel: system name, node name, release, version and machine. |
deviceID | Current device ID |
reasonCode | Reason code of the occurred event |
buildDate | Appdome fusion date of the current application |
devicePlatform | OS name of the current device |
updatedOSVersion | Is the OS version up to date |
timeZone | Time zone |
deviceFaceDown | Is the device face down |
locationLong | Location longitude conditioned by location permission |
locationLat | Location latitude conditioned by location permission |
locationState | Location state conditioned by location permission |
wifiSsid | Wifi SSID |
wifiSsidPermissionStatus | Wifi SSID permission status |
With Threat-Events™ enabled (turned ON), iOS developers can get detailed attack intelligence and granular defense control in iOS applications and create amazing user experiences for all mobile end users when Plist modification is detected.
The following is a code sample for native iOS apps, which uses all values in the specification above for Protect plist:
Important! Replace all placeholder instances of <Context Key> with the specific name of your threat event context key across all language examples. This is crucial to ensure your code functions correctly with the intended event data. For example, The <Context Key> could be the message, externalID, OS Version, reason code, etc.
x
let center = NotificationCenter.default
center.addObserver(forName: Notification.Name(""), object: nil, queue: nil) { (note) in
guard let usrInf = note.userInfo else {
return
}
let message = usrInf["message"]; // Message shown to the user
let reasonData = usrInf["reasonData"]; // Threat detection cause
let reasonCode = usrInf["reasonCode"]; // Event reason code
// Current threat event score
let currentThreatEventScore = usrInf["currentThreatEventScore"];
// Total threat events score
let threatEventsScore = usrInf["threatEventsScore"];
// Replace '<Context Key>' with your specific event context key
// let variable = usrInf["<Context Key>"];
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
xxxxxxxxxx
[[NSNotificationCenter defaultCenter] addObserverForName: @"" object:nil queue:nil usingBlock:^(NSNotification *org_note) {
__block NSNotification *note = org_note;
dispatch_async(dispatch_get_main_queue(), ^(void) {
// Message shown to the user
NSString *message = [[note userInfo] objectForKey:@"message"];
// Threat detection cause
NSString *reasonData = [[note userInfo] objectForKey:@"reasonData"];
// Event reason code
NSString *reasonCode = [[note userInfo] objectForKey:@"reasonCode"];
// Current threat event score
NSString *currentThreatEventScore = [[note userInfo] objectForKey:@"currentThreatEventScore"];
// Total threat events score
NSString *threatEventsScore = [[note userInfo] objectForKey:@"threatEventsScore"];
// Replace '<Context Key>' with your specific event context key
// NSString *variable = [[note userInfo] objectForKey:@"<Context Key>"];
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
}];
xxxxxxxxxx
const { ADDevEvents } = NativeModules;
const aDDevEvents = new NativeEventEmitter(ADDevEvents);
function registerToDevEvent(action, callback) {
NativeModules.ADDevEvents.registerForDevEvent(action);
aDDevEvents.addListener(action, callback);
}
export function registerToAllEvents() {
registerToDevEvent(
"",
(userinfo) => Alert.alert(JSON.stringify(userinfo))
var message = userinfo["message"] // Message shown to the user
var reasonData = userinfo["reasonData"] // Threat detection cause
var reasonCode = userinfo["reasonCode"] // Event reason code
// Current threat event score
var currentThreatEventScore = userinfo["currentThreatEventScore"]
// Total threat events score
var threatEventsScore = userinfo["threatEventsScore"]
// Replace '<Context Key>' with your specific event context key
// var variable = userinfo["<Context Key>"]
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
);
}
x
RegisterReceiver(new ThreatEventReceiver(), new IntentFilter(""));
class ThreatEventReceiver : BroadcastReceiver
{
public override void OnReceive(Context context, Intent intent)
{
// Message shown to the user
String message = intent.GetStringExtra("message");
// Threat detection cause
String reasonData = intent.GetStringExtra("reasonData");
// Event reason code
String reasonCode = intent.GetStringExtra("reasonCode");
// Current threat event score
String currentThreatEventScore = intent.GetStringExtra("currentThreatEventScore");
// Total threat events score
String threatEventsScore = intent.GetStringExtra("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// String variable = intent.GetStringExtra("<Context Key>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
}
x
NSNotificationCenter.DefaultCenter.AddObserver(
(NSString)"", // Threat-Event Identifier
delegate (NSNotification notification)
{
// Message shown to the user
var message = notification.UserInfo.ObjectForKey("message");
// Threat detection cause
var reasonData = notification.UserInfo.ObjectForKey("reasonData");
// Event reason code
var reasonCode = notification.UserInfo.ObjectForKey("reasonCode");
// Current threat event score
var currentThreatEventScore = notification.UserInfo.ObjectForKey("currentThreatEventScore");
// Total threat events score
var threatEventsScore = notification.UserInfo.ObjectForKey("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// var variable = notification.UserInfo.ObjectForKey("<Context Keys>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
);
xxxxxxxxxx
window.broadcaster.addEventListener("", function(userInfo) {
var message = userInfo.message // Message shown to the user
var reasonData = userInfo.reasonData // Threat detection cause
var reasonCode = userInfo.reasonCode // Event reason code
// Current threat event score
var currentThreatEventScore = userInfo.currentThreatEventScore
// Total threat events score
var threatEventsScore = userInfo.threatEventsScore
// Replace '<Context Key>' with your specific event context key
// var variable = userInfo.<Context Keys>
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
x
import 'dart:async';
import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
class PlatformChannel extends StatefulWidget {
const PlatformChannel({super.key});
State<PlatformChannel> createState() => _PlatformChannelState();
}
class _PlatformChannelState extends State<PlatformChannel> {
// Replace with your EventChannel name
static const String _eventChannelName = "";
static const EventChannel _eventChannel = EventChannel(_eventChannelName);
void initState() {
super.initState();
_eventChannel.receiveBroadcastStream().listen(_onEvent, onError: _onError);
}
void _onEvent(Object? event) {
setState(() {
// Adapt this section based on your specific event data structure
var eventData = event as Map;
// Example: Accessing 'externalID' field from the event
var externalID = eventData['externalID'];
// Customize the rest of the fields based on your event structure
String message = eventData['message']; // Message shown to the user
String reasonData = eventData['reasonData']; // Threat detection cause
String reasonCode = eventData['reasonCode']; // Event reason code
// Current threat event score
String currentThreatEventScore = eventData['currentThreatEventScore'];
// Total threat events score
String threatEventsScore = eventData['threatEventsScore'];
// Replace '<Context Key>' with your specific event context key
// String variable = eventData['<Context Keys>'];
});
}
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
Using Appdome, there are no development or coding prerequisites to build secured iOS Apps by using Protect plist. There is no SDK and no library to code or implement in the app and no gateway to deploy in your network. All protections are built into each app and the resulting app is self-defending and self-protecting.
Releasing and Publishing Mobile Apps with Protect plist
After successfully securing your app by using Appdome, there are several available options to complete your project, depending on your app lifecycle or workflow. These include:
- Customizing, Configuring & Branding Secure Mobile Apps
- Deploying/Publishing Secure mobile apps to Public or Private app stores
- Releasing Secured Android & iOS Apps built on Appdome.
Related Articles:
- How to Prevent App Signing by Unauthorized Developers
- How to Prevent non-approved Android, iOS app store publishing
- How to Block Frida Toolkits
- Block Magisk Manager and Magisk Hide
Check out Appdome’s Mobile Fraud Detection or request a demo at any time.
How Do I Learn More?
If you have any questions, please send them our way at support.appdome.com or via the chat window on the Appdome platform.
Thank you!
Thanks for visiting Appdome! Our mission is to secure every app on the planet by making mobile app security easy. We hope we’re living up to the mission with your project.