How to Implement Non-Native Code Obfuscation in Android & iOS Mobile Apps
Learn to Obfuscate Non-Native Code in Mobile apps, in mobile CI/CD with a Data-Driven DevSecOps™ build system.
What is Non-Native Code Obfuscation?
Non-Native Code refers to mobile applications written in high-level programming languages, typically JavaScript or C#. Instead of being compiled into binaries, these source code files are saved as-is inside the application. When the application launches, it reads the code (clear text) from the saved source code files and runs the code from there. This means that all of your code is available to anyone with the application file in hand.
To counter this vulnerability, Non-Native Code Obfuscation obfuscates your source code in the application itself.
Here’s a breakdown of what Appdome obfuscates for different frameworks:
React Native: A framework that utilizes JavaScript to build mobile apps with a focus on native-like performance and user experience. React Native apps use a bundled JavaScript file (.jsbundle) that contains all the code needed by the application. Appdome obfuscates this specific file to protect your JavaScript code.
Cordova: A framework that allows you to use familiar web technologies like HTML, CSS, and JavaScript to create mobile apps that can run on various platforms. Cordova apps essentially run a web view within a native app container. Appdome obfuscates both the .js
files containing your application code and the .html
files that define the structure of your app’s user interface.
Xamarin: A framework that uses C# for mobile app development. C# offers features similar to other high-level languages like Java. Xamarin apps store code in various file formats. Appdome obfuscates critical files used by Xamarin applications, including:
.exe – Executable files containing the core application logic.
.dll – Dynamic Link Libraries containing reusable code functionalities.
.dll.config – Configuration files for the DLLs.
.blob – Files containing binary data used by the application.
These obfuscation techniques prevent unauthorized reading of your app’s contents, even if someone were to try to extract the app’s files. You can easily integrate Non-Native Code Obfuscation into any Xamarin, Cordova, or React Native JS application on iOS or Android without the need for additional code or coding.
Why use Non-Native Code Obfuscation?
Obfuscating non-native mobile apps is a complex and time-consuming process. This process requires employing several methods and tools, and the development resources needed for completing the task are highly specialized. Appdome simplifies the challenge of obfuscating non-native mobile apps by eliminating the need for specialized tools or development resources; you only need to enable our protection.
Prerequisites for Using Non-Native Code Obfuscation:
To use Appdome’s mobile app security build system to Obfuscate Non-Native Code , you’ll need:
- Appdome account (create a free Appdome account here)
- A license for Non-Native Code Obfuscation
- Mobile App (.ipa for iOS, or .apk or .aab for Android)
- Signing Credentials (see Signing Secure Android apps and Signing Secure iOS apps)
Obfuscate Non-Native Code on Mobile apps using Appdome
On Appdome, follow these 3 simple steps to create self-defending Mobile Apps that Obfuscate Non-Native Code without an SDK or gateway:
-
Upload the Mobile App to Appdome.
-
Upload an app to Appdome’s Mobile App Security Build System
-
Upload Method: Appdome Console or DEV-API
-
Mobile App Formats: .ipa for iOS, or .apk or .aab for Android
-
Non-Native Code Obfuscation Compatible With: Obj-C, Java, JS, C#, C++, Swift, Kotlin, Flutter, React Native, Unity, Xamarin, and more
-
-
Build the feature: Non-Native Code Obfuscation.
-
Building Non-Native Code Obfuscation by using Appdome’s DEV-API:
-
Create and name the Fusion Set (security template) that will contain the Non-Native Code Obfuscation feature as shown below:
-
Follow the steps in Sections 2.2.1-2.2.2 of this article, Building the Non-Native Code Obfuscation feature via Appdome Console, to add the Non-Native Code Obfuscation feature to this Fusion Set.
-
Open the Fusion Set Detail Summary by clicking the “...” symbol on the far-right corner of the Fusion Set. Copy the Fusion Set ID from the Fusion Set Detail Summary (as shown below):
Figure 2: Fusion Set Detail Summary
Note: Annotating the Fusion Set to identify the protection(s) selected is optional only (not mandatory). -
Follow the instructions below to use the Fusion Set ID inside any standard mobile DevOps or CI/CD toolkit like Bitrise, App Center, Jenkins, Travis, Team City, Circle CI or other system:
-
Build an API for the app – for instructions, see the tasks under Appdome API Reference Guide
-
Look for sample APIs in Appdome’s GitHub Repository
-
Figure 1: Fusion Set that will contain the Non-Native Code Obfuscation feature
Note: Naming the Fusion Set to correspond to the protection(s) selected is for illustration purposes only (not required). -
-
Building the Non-Native Code Obfuscation feature via Appdome Console
To build the Non-Native Code Obfuscation protection by using Appdome Console, follow the instructions below.
-
Where: Inside the Appdome Console, go to Build > Security Tab > TOTALCode™ Obfuscation section.
-
How: Check whether is toggled On (enabled), otherwise enable it . The feature Non-Native Code Obfuscation is enabled by default, as shown below. Toggle (turn ON) Non-Native Code Obfuscation, as shown below.
If needed, Customize the Threat Notification to be displayed to the mobile end-user in a standard OS dialog notification when Appdome Obfuscates Non-Native Code .Figure 3: Obfuscate Non-Native Code option
Note: The App Compromise Notification contains an easy to follow default remediation path for the mobile app end user. You can customize this message as required to achieve brand specific support, workflow or other messaging. -
When you select the Non-Native Code Obfuscation you'll notice that your Fusion Set you created in step 2.1.1 now bears the icon of the protection category that contains Non-Native Code Obfuscation
Figure 4: Fusion Set that displays the newly added Non-Native Code Obfuscation protection
-
Click Build My App at the bottom of the Build Workflow (shown in Figure 3).
-
Congratulations! The Non-Native Code Obfuscation protection is now added to the mobile app -
-
Certify the Non-Native Code Obfuscation feature in Mobile Apps
After building Non-Native Code Obfuscation, Appdome generates a Certified Secure™ certificate to guarantee that the Non-Native Code Obfuscation protection has been added and is protecting the app. To verify that the Non-Native Code Obfuscation protection has been added to the mobile app, locate the protection in the Certified Secure™ certificate as shown below:
Figure 5: Certified Secure™ certificate
Each Certified Secure™ certificate provides DevOps and DevSecOps organizations the entire workflow summary, audit trail of each build, and proof of protection that Non-Native Code Obfuscation has been added to each Mobile app. Certified Secure provides instant and in-line DevSecOps compliance certification that Non-Native Code Obfuscation and other mobile app security features are in each build of the mobile app
Using Threat-Events™ for Non-Native Code Intelligence and Control in Mobile Apps
Appdome Threat-Events™ provides consumable in-app mobile app attack intelligence and defense control when Non-Native Code is detected. To consume and use Threat-Events™ for Non-Native Code in Mobile Apps, use AddObserverForName in Notification Center, and the code samples for Threat-Events™ for Non-Native Code shown below.
The specifications and options for Threat-Events™ for Non-Native Code are:
Threat-Event™ Elements | Obfuscate Non-Native Code Method Detail |
---|---|
Appdome Feature Name | Non-Native Code Obfuscation |
Threat-Event Mode | |
OFF, IN-APP DEFENSE | Appdome detects, defends and notifies user (standard OS dialog) using customizable messaging. |
ON, IN-APP DETECTION | Appdome detects the attack or threat and passes the event in a standard format to the app for processing (app chooses how and when to enforce). |
ON, IN-APP DEFENSE | Uses Appdome Enforce mode for any attack or threat and passes the event in a standard format to the app for processing (gather intel on attacks and threats without losing any protection). |
Certified Secure™ Threat Event Check | x |
Visible in ThreatScope™ | x |
Developer Parameters for Obfuscating Non-Native Code Threat-Event™ | |
Threat-Event NAME | |
Threat-Event DATA | reasonData |
Threat-Event CODE | reasonCode |
Threat-Event REF | |
Threat-Event SCORE | |
currentThreatEventScore | Current Threat-Event score |
threatEventsScore | Total Threat-events score |
Threat-Event Context Keys | |
---|---|
message | Message displayed for the user on event |
failSafeEnforce | Timed enforcement against the identified threat |
externalID | The external ID of the event which can be listened via Threat Events |
osVersion | OS version of the current device |
deviceModel | Current device model |
deviceManufacturer | The manufacturer of the current device |
fusedAppToken | The task ID of the Appdome fusion of the currently running app |
kernelInfo | Info about the kernel: system name, node name, release, version and machine. |
carrierPlmn | PLMN of the device. Only available for Android devices. |
deviceID | Current device ID |
reasonCode | Reason code of the occurred event |
buildDate | Appdome fusion date of the current application |
devicePlatform | OS name of the current device |
carrierName | Carrier name of the current device. Only available for Android. |
updatedOSVersion | Is the OS version up to date |
deviceBrand | Brand of the device |
deviceBoard | Board of the device |
buildUser | Build user |
buildHost | Build host |
sdkVersion | Sdk version |
timeZone | Time zone |
deviceFaceDown | Is the device face down |
locationLong | Location longitude conditioned by location permission |
locationLat | Location latitude conditioned by location permission |
locationState | Location state conditioned by location permission |
wifiSsid | Wifi SSID |
wifiSsidPermissionStatus | Wifi SSID permission status |
With Threat-Events™ enabled (turned ON), Mobile developers can get detailed attack intelligence and granular defense control in Mobile applications and create amazing user experiences for all mobile end users when Non-Native Code is detected.
The following is a code sample for native Mobile apps, which uses all values in the specification above for Non-Native Code Obfuscation:
Important! Replace all placeholder instances of <Context Key> with the specific name of your threat event context key across all language examples. This is crucial to ensure your code functions correctly with the intended event data. For example, The <Context Key> could be the message, externalID, OS Version, reason code, etc.
xxxxxxxxxx
IntentFilter intentFilter = new IntentFilter();
intentFilter.addAction("");
BroadcastReceiver threatEventReceiver = new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
String message = intent.getStringExtra("message"); // Message shown to the user
String reasonData = intent.getStringExtra("reasonData"); // Threat detection cause
String reasonCode = intent.getStringExtra("reasonCode"); // Event reason code
// Current threat event score
String currentThreatEventScore = intent.getStringExtra("currentThreatEventScore");
// Total threat events score
String threatEventsScore = intent.getStringExtra("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// String variable = intent.getStringExtra("<Context Key>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
};
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
registerReceiver(threatEventReceiver, intentFilter, Context.RECEIVER_NOT_EXPORTED);
} else {
registerReceiver(threatEventReceiver, intentFilter);
}
xxxxxxxxxx
val intentFilter = IntentFilter()
intentFilter.addAction("")
val threatEventReceiver = object : BroadcastReceiver() {
override fun onReceive(context: Context?, intent: Intent?) {
var message = intent?.getStringExtra("message") // Message shown to the user
var reasonData = intent?.getStringExtra("reasonData") // Threat detection cause
var reasonCode = intent?.getStringExtra("reasonCode") // Event reason code
// Current threat event score
var currentThreatEventScore = intent?.getStringExtra("currentThreatEventScore")
// Total threat events score
var threatEventsScore = intent?.getStringExtra("threatEventsScore")
// Replace '<Context Key>' with your specific event context key
// var variable = intent?.getStringExtra("<Context Key>")
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
}
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.TIRAMISU) {
registerReceiver(threatEventReceiver, intentFilter, Context.RECEIVER_NOT_EXPORTED)
} else {
registerReceiver(threatEventReceiver, intentFilter)
}
x
let center = NotificationCenter.default
center.addObserver(forName: Notification.Name(""), object: nil, queue: nil) { (note) in
guard let usrInf = note.userInfo else {
return
}
let message = usrInf["message"]; // Message shown to the user
let reasonData = usrInf["reasonData"]; // Threat detection cause
let reasonCode = usrInf["reasonCode"]; // Event reason code
// Current threat event score
let currentThreatEventScore = usrInf["currentThreatEventScore"];
// Total threat events score
let threatEventsScore = usrInf["threatEventsScore"];
// Replace '<Context Key>' with your specific event context key
// let variable = usrInf["<Context Key>"];
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
xxxxxxxxxx
[[NSNotificationCenter defaultCenter] addObserverForName: @"" object:nil queue:nil usingBlock:^(NSNotification *org_note) {
__block NSNotification *note = org_note;
dispatch_async(dispatch_get_main_queue(), ^(void) {
// Message shown to the user
NSString *message = [[note userInfo] objectForKey:@"message"];
// Threat detection cause
NSString *reasonData = [[note userInfo] objectForKey:@"reasonData"];
// Event reason code
NSString *reasonCode = [[note userInfo] objectForKey:@"reasonCode"];
// Current threat event score
NSString *currentThreatEventScore = [[note userInfo] objectForKey:@"currentThreatEventScore"];
// Total threat events score
NSString *threatEventsScore = [[note userInfo] objectForKey:@"threatEventsScore"];
// Replace '<Context Key>' with your specific event context key
// NSString *variable = [[note userInfo] objectForKey:@"<Context Key>"];
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
}];
xxxxxxxxxx
const { ADDevEvents } = NativeModules;
const aDDevEvents = new NativeEventEmitter(ADDevEvents);
function registerToDevEvent(action, callback) {
NativeModules.ADDevEvents.registerForDevEvent(action);
aDDevEvents.addListener(action, callback);
}
export function registerToAllEvents() {
registerToDevEvent(
"",
(userinfo) => Alert.alert(JSON.stringify(userinfo))
var message = userinfo["message"] // Message shown to the user
var reasonData = userinfo["reasonData"] // Threat detection cause
var reasonCode = userinfo["reasonCode"] // Event reason code
// Current threat event score
var currentThreatEventScore = userinfo["currentThreatEventScore"]
// Total threat events score
var threatEventsScore = userinfo["threatEventsScore"]
// Replace '<Context Key>' with your specific event context key
// var variable = userinfo["<Context Key>"]
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
);
}
x
RegisterReceiver(new ThreatEventReceiver(), new IntentFilter(""));
class ThreatEventReceiver : BroadcastReceiver
{
public override void OnReceive(Context context, Intent intent)
{
// Message shown to the user
String message = intent.GetStringExtra("message");
// Threat detection cause
String reasonData = intent.GetStringExtra("reasonData");
// Event reason code
String reasonCode = intent.GetStringExtra("reasonCode");
// Current threat event score
String currentThreatEventScore = intent.GetStringExtra("currentThreatEventScore");
// Total threat events score
String threatEventsScore = intent.GetStringExtra("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// String variable = intent.GetStringExtra("<Context Key>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
}
x
NSNotificationCenter.DefaultCenter.AddObserver(
(NSString)"", // Threat-Event Identifier
delegate (NSNotification notification)
{
// Message shown to the user
var message = notification.UserInfo.ObjectForKey("message");
// Threat detection cause
var reasonData = notification.UserInfo.ObjectForKey("reasonData");
// Event reason code
var reasonCode = notification.UserInfo.ObjectForKey("reasonCode");
// Current threat event score
var currentThreatEventScore = notification.UserInfo.ObjectForKey("currentThreatEventScore");
// Total threat events score
var threatEventsScore = notification.UserInfo.ObjectForKey("threatEventsScore");
// Replace '<Context Key>' with your specific event context key
// var variable = notification.UserInfo.ObjectForKey("<Context Keys>");
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
);
xxxxxxxxxx
window.broadcaster.addEventListener("", function(userInfo) {
var message = userInfo.message // Message shown to the user
var reasonData = userInfo.reasonData // Threat detection cause
var reasonCode = userInfo.reasonCode // Event reason code
// Current threat event score
var currentThreatEventScore = userInfo.currentThreatEventScore
// Total threat events score
var threatEventsScore = userInfo.threatEventsScore
// Replace '<Context Key>' with your specific event context key
// var variable = userInfo.<Context Keys>
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
});
x
import 'dart:async';
import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
class PlatformChannel extends StatefulWidget {
const PlatformChannel({super.key});
State<PlatformChannel> createState() => _PlatformChannelState();
}
class _PlatformChannelState extends State<PlatformChannel> {
// Replace with your EventChannel name
static const String _eventChannelName = "";
static const EventChannel _eventChannel = EventChannel(_eventChannelName);
void initState() {
super.initState();
_eventChannel.receiveBroadcastStream().listen(_onEvent, onError: _onError);
}
void _onEvent(Object? event) {
setState(() {
// Adapt this section based on your specific event data structure
var eventData = event as Map;
// Example: Accessing 'externalID' field from the event
var externalID = eventData['externalID'];
// Customize the rest of the fields based on your event structure
String message = eventData['message']; // Message shown to the user
String reasonData = eventData['reasonData']; // Threat detection cause
String reasonCode = eventData['reasonCode']; // Event reason code
// Current threat event score
String currentThreatEventScore = eventData['currentThreatEventScore'];
// Total threat events score
String threatEventsScore = eventData['threatEventsScore'];
// Replace '<Context Key>' with your specific event context key
// String variable = eventData['<Context Keys>'];
});
}
// Your logic goes here (Send data to Splunk/Dynatrace/Show Popup...)
}
Using Appdome, there are no development or coding prerequisites to build secured Mobile Apps by using Non-Native Code Obfuscation. There is no SDK and no library to code or implement in the app and no gateway to deploy in your network. All protections are built into each app and the resulting app is self-defending and self-protecting.
Releasing and Publishing Mobile Apps with Non-Native Code Obfuscation
After successfully securing your app by using Appdome, there are several available options to complete your project, depending on your app lifecycle or workflow. These include:
- Customizing, Configuring & Branding Secure Mobile Apps
- Deploying/Publishing Secure mobile apps to Public or Private app stores
- Releasing Secured Android & iOS Apps built on Appdome.
Related Articles:
- Binary Code Obfuscation, Anti-Reversing – Android & iOS
- Obfuscate iOS Control Flows & Methods, Anti-Reversing iOS Apps
- How to Encrypt Java Class Files (.dex) in Android Apps
How Do I Learn More?
If you have any questions, please send them our way at support.appdome.com or via the chat window on the Appdome platform.
Thank you!
Thanks for visiting Appdome! Our mission is to secure every app on the planet by making mobile app security easy. We hope we’re living up to the mission with your project.